恒达娱乐 > 恒达娱乐 > 多目标优化问题

多目标优化问题

admin 恒达娱乐 2020年04月13日

  多目标优化问题_数学_自然科学_专业资料。多目标优化方法 基本概述 几个概念 优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生 活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同 时达到最优

  多目标优化方法 基本概述 几个概念 优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生 活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同 时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个 目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给 切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工 成本最低 2)生产率低 3)刀具寿命最长;同时还要满足进给量小于 加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x1,x2,…,xn ]T ---------- n 维向量 min F(X)=[f1(X),f2(X),…,fn(X)]T----------向量形式的目标函数 s.t. gi(X)≤0,(i=1,2,…,m) hj(X)=0,(j=1,2,…,k) --------设计变量应满足的约束条件 多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在 多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意 两个解的优劣。 二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解 X*:就是在 X*所在的区间 D 中其函数值比其他任何点的函数 值要小即 f(X*)≤f(X),则 X*为优化问题的最优解。 劣解 X*:在 D 中存在 X 使其函数值小于解的函数值,即 f(x)≤f(X*), 即存在比解更优的点。 非劣解 X*:在区间 D 中不存在 X 使 f(X)全部小于解的函数值 f(X*). 如图:在[0,1]中 X*=1 为最优解 在[0,2]中 X*=a 为劣解 在[1,2]中 X*=b 为非劣解 多目标优化问题中绝对最优解存在可能性一般很小,而劣解没有 意义,所以通常去求其非劣解来解决问题。 三、多目标优化方法 多目标优化方法主要有两大类: 1)直接法:直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题。 2)间接法 如:主要目标法、统一目标法、功效系数法等。 将多目标优化问题转化为一系列单目标优化问题。 如:分层系列法等。 1、主要目标法 求解时从多目标中选择一个目标作为主要目标,而其他目标只需 满足一定要求即可,因此可将这些目标转化成约束条件,恒达登录也就是用约 束条件的形式保证其他目标不致太差,这样就变成单目标处理方法。 例如:多目标函数 f1(x),f2(x),.....,fn(x)中选择 fk(x)作为主要目标, 这时问题变为求 min fk(x) D={xf min≤f i(x)≤f max},D 为解所对应的其他目标函数应满足上下 限。 2、统一目标法 通过某种方法将原来多目标函数构造成一个新的目标函数,从而 将多目标函数转变为单目标函数求解。 ①线性加权和法 根据各目标函数的重要程度给予相应的权数,然后各目标函数与 权数相乘再求和即构成单目标函数。例如:根据各目标函数 f1(X),f2(X),...,fn(X)的重要程度,对应确定一组权数ω 1,ω 2,ω n n 进行构造 f(X)=ω 1f1+ω 2f2+…+ω n fn,其中 ? ωi ? 1,ωi ? 0 ,于是求 f(X) 1 的最优解即为多目标函数的最优解。(重点是权数的确定) 下面介绍两种确定权数的方法: 1、容限法。求出各目标函数在区域的变化范围 a≤f(x)≤b,则取Δ = a ? b 2 为其容限,则权数为ω = 1 。这种方法目的是在评价函数中使子目标 ?2 在数量级上达到统一平衡。 2、求出各目标函数的极小值 fi*,然后分别取倒数作为各自的权数。 ②理想点法 一般很难使各子目标函数同时达到最优,但是可以使各子目标尽 可能接近目标,则可较好的求出非劣解,先用单目标优化法求出各自 ? ? ? 的最优点 Xi*和最优值 fi*,构造各评价函数 f(X)={ n fi ( X ) ? f * i 2 } , 1/2, 1 然后求极值 min f,变为单目标优化问题。 在理想点法基础上如果再引入权数,则称为平方加权法。 3、功效系数法 功效系数法又叫功效函数法,它是根据多目标规划原理,对 每一项评价指标确定一个满意值和不允许值,以满意值为上限, 以不允许值为下限.计算各指标实现满意值的程度,并以此确定 各指标的分数,再经过加权平均进行综合,恒达登录从而评价被研究对象 的综合状况。运用功效系数法进行业绩评价,企业中不同的业绩 因素得以综合,包括财务的和非财务的、定向的和非定量的。 多目标优化问题中各单目标函数要求不一,有的要求极大 值,有的要求极小值,有的要求一个合适值,为了反映这些要求 的不同,引入功效函数 di,其值即为功效系数,规定 di∈(0,1), 当 fi 满意时,di=1;fi 不满意时,di=0;请他情况取 0-1 之间的的 数。这样组成评价函数 d ? n d1d2...dn ,d=1 则最满意,d=0 则有不 符合要求的 f。 系数 di 的确定:先求出区间上各个目标函数的最大值 f i max 和最小值 f i min , 在 n 个子函数中,当某个子函数的值越大,功效系数越小时 用公式 di ? fmax-f (X) f m a x-f m in 求其功效系数; 反之用公式 di ? f (X)-fmin f m a x-f m in 求系数。功效系数法的基本思想是先按各子目标值 的优劣分别求出其对应的功效系数,然后再构造评价函数 max f(X)= n d1d2...dn 便可转化为单目标优化问题。 此方法特点: 1)直接按要求的性能指标来评价函数,直观,且初步试算后, 调整方便; 2)无论各子目标的量级和量纲如何,最终都转化为在[0,1]区间 取值,而且一旦有一个子目标达不到要求,则其相应的功效系数 为 0,从而使评价函数也为 0,表明不能接受所得设计方案; 3)可以处理既非越大越好,也非越小越好的目标函数; 4、分层序列法 1)基本思想 将多目标优化问题中的 n 个目标函数分清主次,按照其重要 程度逐一排除,然后依次对各个目标函数求最优解,只是后一目 标应在前一目标最优解的集合域内寻优。 现在假设 f1(x)最重要,f2(x)其次,f3(x)再其次,依次类 推。首先在域内对第一个目标函数 f1(x)求解,求得最优解,然 后在第一个目标函数的最优解集合域内,求第二个目标函数的最 优值,也就是将第一个目标函数转化成辅助约束。然后在第一个 和第二个目标函数的辅助约束下求第三个目标函数的最优解,依 次进行下去,最后求得最后的目标函数的最优解即为多目标优化 问题的最优解。 2)特点。 在求解过程中可能会出现中断现象,使求解过程无法 继续进行下去。 当求解到第 k 个目标函数的最优解是唯一时,则再往后求第 (k+1),(k+2),….,n 个目标函数的解就完全没有意义了。尤 其是当求得的第一个目标函数的最优解是唯一时,则失去了多目 标优化的意义了。为此引入“宽容分层序列法”。这种方法是将 分层序列法中的最优解放宽要求,即求后一个函数的最优解时, 是前一个函数接近最优就行,如下图: 不作宽容时, ~x 为最优解,但考虑 f2(x)后,则取 x(1) 为最优解, 这时存在一个宽容值ε 1,恒达注册登录第一个函数也就存在一个误差。 多目标优化的主要方法及特点、思路和步骤 优化方法 主要 线性 理想点 功效 分层序 目标法 加权法 法 系数法 列法 方法特 点 思路 主要步 骤 1、分析出 按各目标 希望各目 只要有一 对各目标 主要目标 函数重要 标函数都 个分目标 有优先次 函数至关 程度综合 能达到最 不被接 序的问题 重要。2、 考虑其影 优化。 受,方案 求优。 对决策者 响。 就不被接 专业知识 受。直观 要求高。 选出影响 以权数形 以各个分 引入功效 在允许 最重要的 式体现重 目标各自 系数,以 范围内 函数作为 要程度, 最优解作 功效系数 按优先 主要目 组成线性 为理想 的几何平 次序依 标,其余 加权和函 点,尽量 均值作为 次优化。 作为约束 数。 向该点逼 评价函 条件 近。 数。 1、将多目 1、确定各 1、找出各 1、求各目 1、按重要 标函数中 目标函数 目标函数 标函数的 程度依次 选出主要 的权数 的各自最 功效系数 排序, 目标函数 2、各目标 优解。 2、以功效 2、对第一 作为单目 函数乘以 2、构造各 系数的几 重要的目 标,其余 权数后相 目标函数 何平均值 标函数求 为约束条 加组成综 离各自优 组成目标 优。 件。 合目标函 化解的距 函数。 3、在第一 2、用单目 数。 标法求 解。 离作为单 目标函数 求最优解 允许的范 围内对第 二函数求 优 4、重复直 至最后目 标函数。

标签: